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Abstract. This paper is the first in a series in which the authors propose to change the face 
of teaching mathematics in a technical university, especially for first year students who are 
preparing to become civil engineers. The paper refers to the teaching of concepts related to 
some sets of real numbers. The main idea is that the exposure rigorous, technique, specific 
to teach mathematics in a college math is completed by an informal exposure. Thus the 
authors add historical information, find motivations of the subject discussed, present some 
applications, mainly in engineering, and states open problems of the field. So, exposure 
becomes more accessible. Another idea is that even the exposure technique is not usual, the 
authors preferring gradual exposure, instead of traditional. Also the authors present some 
computer programs related to the subject and an application in engineering.

exposure rigorous, technique,
informal exposure

 historical information motivations 
applications open problems
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even exposure technique is not the usual
gradual exposure

What is the gradual method? 

Definitions and examples - 

Classical results - 

Proofs - 

Examples and solved exercises - 

Questionnaire - 

Proposed exercises - 

What is the advantage of gradual method? 

some applications in engineering or/and in economics 

gradual manner
sets of real numbers

Usual numerical sets   ` ] _ \   \ _ \ _
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Uncountable set

Bounded above set bounded below set A \
b\ x b x b x A  b

upper bound lower bound A

A bounded above A bounded below

Bounded set A  \
a b \ a x b  x A  M   \ x M

x A 

bounded set unbounded set. 

countable sets 
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The supremum of a bounded above set A \
A A

A A
A \

The infimum of a bounded below set A \
A A

A A
A \

Classic enunciation: (i) x y y  \ n   `  such that ny x . 

n  n 

n

Equivalent enunciation: (ii) z  \  there exists a unique m\  so 
that m z m   .  m z entire part z

Classic enunciation: (i)  n n
a


 

`
_  and  n n

b



`

_  such that: 

n na a a b b b        , 
       n n n nn n

b a b a

c  \  so that  n na c b n   ` . 

unbounded sets

 a  a  a 

a\   

bounded sets

 a b  a b  a b  a b
a b a b \
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Equivalent enunciation: (ii) Any decreasing sequence of closed intervals 
 n n
I


here “decreasing” meaning that n nI I  , n  , with the extremities of 

intervals in _  and having the  sequence of lengths converging to , has the 
intersection n

n

I

∩  reduced to a point. 

 n
n

I c


∩

Density of _  in \ x y \ , with x y r _ , such that x r y 
(that is between any two real numbers there exists a least one rational number)        

x y \ , with x y  there are an infinity of rational numbers  n n
r


so 

that: nx r y n   ` . 

A finite union of countable sets is a countable set. (More general, even a 
countable union of countable sets is countable.) 

_  is a countable set. 

computer program

 The interval  = x x   \ is an uncountable set. 

 The interval  a b  (with a b  in \ ) is an uncountable set.  
 (Density of \ _  in \ ) x y \ with x y  s \ _ , so that 

x s y   (that is between any two real numbers there is at least one irrational 
number). 
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Nested intervals Theorem : 
   

   

 
  
          
        

\ \
\

n nn n

n n

n nn n n nn n

a b such that

1) a a a b b b c  such that
a c b nb a  and b a

Any nonempty bounded above set (bounded below set, respectively) A \ , 
has a supremum respectively an infimum . 

If A \  and M \ , then:  
M = A) x A x M   , and   , x A   such that M x  . 

m A x A x m and        x A   such that m x  . 

proofs 
examples solved  proposed problems

questions
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numerical sets
goals extensions ` ]

natural numbers integers ] _ _ \
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order relation  \ 
reflexivity antisymmetry

transitivity
x x x  \ x y y x x y   x y y z x z  

totally ordered commutative algebraic field
x y

 x y y x
axioms

properties  n n
a  n n

b Cantor's 
axiom

Cantor's axiom intervals
` ] countable \ not countable

usual numerical sets

usual numerical sets natural 
numbers integers rational numbers, real numbers
complex numbers

   ` ] _ \ ^
` natural numbers

] integer numbers
` `

x    x   `
] _ rational numbers

] ]

x    x   ]

_ \ real numbers
_ _

x    x   _
real number
positive

\ ^ complex numbers
\ \

x    x i  i   imaginary unit
\



M. Dăneţ, M.

fractional part

reccuring decimal
repeating decimal

examples

examples 



_ \
irrational numbers

\ _

a
b

a b] b 

 e

equipotent sets countable sets
uncountable sets

 set theory
finite A,

cardinal number A
infinite

the (infinite) set of 
natural numbers can be put in one-to-one correspondence (that is element by element) 
with an own subset that does not contain all natural numbers

  ` `k k⏐ ` ` ` `
Galileo Galilei
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f ` ` f n n n`
bijective injective f n f m n m  

surjective f ` `  ` `f f n n⏐ finite sets
A

B B A B A
Galileo Galilei Italian physicist mathematician

astronomer philosopher

mathematics physics astronomy biology  medicine, chemistry

Galileo

Georg Cantor equipotent sets
C D f C D

C D∼ ` ` `
` `  ` `

 ` ` `
Georg Ferdinand Ludwig Philipp Cantor German

set theory,
Cantor one-to-one 

correspondence between the members of two sets infinite
real numbers natural numbers

` ` countable sets

 a b a b a b a b

density of _ set of in \

\ _

\ _

maximum minimum supremum infimum

bounded above bounded below
 infimum

A A
 maximum A A



M. Dăneţ, M.

A A
 minimum A A

maximum of the function f D  \
x x x

xf x
x x x

x

 
   

   

   D  

maximum of the set  A f x x D  
f A \

f x 
x x

x x
   

   

f

graph
f x 

f x  x D
f x A

f
x f

f x 

A f x x  ⏐ A M
A s
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A 
\ A m A i 

M s m   i s
f.

i  s i s
A 

A \
  \ A \ s

i   \ s   i   s  
A \ i   A

\ A \  

real numbers complex numbers
algebraic numbers  transcendental numbers

real number
rational numbers −7 and the 

irrational numbers irrational algebraic 

number  transcendental number
 number line 

real line integers
decimal representation

real line complex plane
complex numbers

complex number a bi a
b real numbers i imaginary unit i   a

real part b  imaginary part 
 number line 

complex plane 
a bi a b

purely 
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imaginary  real numbe

algebraic number root polynomial
rational coefficients 

integer coefficients
 transcendental

transcendental number complex
 e

it can be extremely 
difficult to show that a given number is transcendental

set of algebraic numbers is countable
uncountable irrational

x  
 real 

numbers

Early use of rational numbers in ancient Egypt 

Ordinary fractions

  Egyptians

Consideration of the concept of irrational numbers in ancient India

Hindu Rules 
of chords Sulba Sutras

irrational numbers
Indian

Manava

Carl B. Boyer
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Consideration of the concept of irrational numbers in ancient Greece 

Greek Pytagoras of Samos
Greek

Hippasus of Metapontum

Euclid Euclid of Alexandria Greek

Euclid's Elements

discreet continuous
Zeno of Elea Greek

irrational number
Eudoxus of Cnidus Greek

reports commensurable incommensurable
proportion

The number zero, the negative integers, the rational and the irrational numbers 
at the Indians, the Chinese and the Arabs 

number zero negative numbers integer rational number
fractional number Indian and the Chinese

Arab Islamic
rational numbers algebraic
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algebra

Arabic
real numbers

Abū Kamil Shuja ibn Aslam ibn Muhammad Ibn Shujã Auoquamel, 
Egyptian Muslim irrational
numbers

radicals
Muslim rational number

lengths lengths lengths surfaces

Persian Al-Māhāni quadratic
cubic irrational numbers quadratic 

irrational numbers
a b c

d
 a b c d 

Iraqi Ali ibn Sulayman 
al-Hashimi existence of irrational numbers

rational irrational numbers
Arab

Leonardo Fibonacci horizontal 
bar in the fractional notation

Leonardo Pisano Bigollo,
Leonardo of Pisa Leonardo Pisano, Leonardo Bonacci, Leonardo Fibonacci

Fibonacci Italian

Kerala school
number amounts

irrational numbers  irrational values

Modern decimal notation 

Simon Stevin Flemish

decimal notation
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The terminology of "real numbers" 

René Descartes Renatus Cartesius
French

Irrational numbers. Transcendental numbers 

irrational numbers transcendental numbers 
algebraic

_
] Johann Heinrich Lambert Swiss


ne n n  Adrien-Marie Legendre 

French

r r  transcendental
e Charles Hermite

Charles Hermite French

Leibniz Gottfried Wilhelm von Leibniz 
German

x algebraic function x
algebraic function

algebraic function in one 
variable x  y f x

     n n
n na x y a x y a x

     ia x
x transcendental function

Euler Swiss
transcendental numbers
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Joseph Liouville French
transcendental numbers 

Liouville constant  
k

k







n n k k

k
Liouville number

transcendental
Georg Ferdinand Ludwig Philipp Cantor German

algebraic numbers real 
numbers

Carl Louis Ferdinand von Lindemann German


e ie   
Euler's identity) iπ π transcendental

Karl Theodor Wilhelm Weierstrass German
π

David Hilbert German

Hilbert's 
seventh problem a b

ab

Gelfond Schneider theorem
Alan Baker English

Abel's impossibility theorem 

Paolo Ruffini Italian
Niels Henrik Abel Norwegian Abel-
Ruffini theorem Abel's impossibility theorem
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ax bx c   a 
b b acx

a
  



Galois theory, a new domain of algebra 

Évariste Galois French

criterion necessary and sufficient condition
domain of algebra Galois theory,

field theory group theory
group theory

There exists transcendental numbers 

 Joseph Liouville French
e e ]

existence of transcendental numbers
Georg Philipp Ludwig Ferdinand Cantor German

modern theory of sets
Charles Hermite French
e Ferdinand von Lindemann German


Wilhelm Karl Theodor Weierstrass

German
David Hilbert German


Adolf Hurwitz German

Real numbers set - uncountable. Algebraic numbers set - countable 

differential calculus
set of real numbers

Georg Ferdinand Ludwig Philipp Cantor German
set theory
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\ real numbers is infinite and uncountable
`

Cantor
algebraic numbers

infinite countable
`

Open problems
conjectures

perfect numbers

perfect numbers J.R. Goldman
n perfect number  n

n n  n n 
Examples of perfect numbers

 
  

oldest
unsolved problem

Another unsolved problem

A short history of perfect numbers 

Pythagoras

perfect numbers
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Hebrew Rabbi Joseph ben Jekuda Ankin

Greek Euclid of Alexandria
 p 

Nicomachus of Gerasa

superabundant numbers numbers deficits n
 n n   n n 
Greek Theon of Smyrna

perfect superabundant deficits

René Descartes  Renatus Cartesius French
Modern 

Philosophy Analytic Geometry

Leonhard Euler Swiss

 James Joseph Sylvester English
matrix theory  number theory combinatorics

irrationals numbers

 Are there irrational numbers 
a b\ _  such that ba  is a rational number?

a b 
ba 

a  b 
ba   
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Gelfond-Schneider theorem If a  and b  are 
algebraic numbers, a  , a   and b  is not a rational number then ba  is a 
transcendental number.

It is known that the real numbers: e    are irrational numbers 
even transcedental numbers, also it is known that the number e  is irrational. 

 following problems  open problems. 
e  e 

m n
m ne 

e e e ee e e
e

     

 Euler’s 
constant Euler-Mascheroni’s constant






   
 


n

n k

n
k

computer program

Scilab

function
endfunction

perfect numbers

// Limit search range for perfect numbers
// Initialize perfect number candidate
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// Perfect number counter is set to 0

//1 is always a divisor
//1 is always in the list of low divisors

/The list of high divisors starts out empty

// Two divisors of n have been found:d and  n / d. 

// Perfect number count increases by 1 

n d

d n d n  d n

computable numbers

real numbers
e 

 approximation algorithms

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number non-computable

all possible computer programs 

nS
n nS

n
n

S S


∪

approximate irrational numbers

computer program
n d

n d
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π
πe
π/e

e

e



e

ee
lnπ
C 

_ rational numbers
countable _ _ \

n

n

n

n

 







0 / 0

/ 0

0



a
b



a b p  p 
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a
b

 a b

 a b

computer program
numerators denominators coprime numbers

Euclid's algorithm
n d coprime relative prime

Euclid's 
algorithm, Euclidean algorithm

Greek Euclid
∼

greatest common divisor

// n1 and n2 are positive integers

// to ensure n1>=n2

// remainder when n2 divides n1



Numerical sets

//            current_frac = frac(i, j);
//            disp(current_frac);
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         

         

         

         

         

         

         

         

         

         

countable set
electrical engineering

signal
sampling

sampling signal processing

sound electromagnetic radiation
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images sensor data, electrocardiograms
control system signals telecommunication transmission signals

sound wave
samples sample

 sampler 

 ideal sampler 

f t t t analog signal
digitize f t t t  sampling 
interval countable set

D f (Δt), f ( Δt), f ( Δt), ..., f (n Δt), ...
D
` D g

n f (n Δ t)
f(t) t t 

n 
 
 

A computer program for an ideal sampler

t

voltage signal
time f t
f t

f t A t  
amplitude A angular frequency ω

phase angle φ.
Amplitude

f t
A| A

Angular frequency

Phase angle
usual manner
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f(t) t Δt= A      f(t) t Δt A    

f(t) t Δt A      f(t)
t Δt A    

usual manner by vertical bars
f n t 

amplitude

t t t t 
 
 
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f t t

countable set

t

t

t t
t 

 
 

amplitudes angular frequencies
periodic fundamental periods
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f t A t  



t t t t     

f (t) t
t

Δ t f (t) tgt
t

Δ t

not periodic signals
t

t
t

t

countable set

 
 

t t

t t
t t

f (t) t Δ t f (t)  t  Δ t f (t)  t  Δ t 
f (t) t Δ t f(t) t Δ t
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second-order polinomial signals

translating
f t t t  t  t 

t  f t left right up down

teaching mathematics in a technical university
difficult

Without sacrificing rigor availability attractiveness
informal

informal description

biggest challenge
common language

punctual 
applications how we can do

countable set

suggestive application samplings of
signals

x

x
x x

x
x

translation fundamental
approximation
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rational numbers
example countable set

Cantor's 
enumeration of a countable collection of countable sets

a final conclusion
mathematics computer science engineering real numbers

representation computer approximation
by rationals countability rationals computer 
programs
countable set engineering

M. Dăneţ, F. Voicu, S.V., Dilimoţ Niţă, I. Popescu, M.
Curs modern de analiză matematică Bucureşti, 
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