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Abstract. The paper presents a simple way to study and numerically analyze the 2D
temperature field in a square cross section of a beam. A new software tool was built and
used for this study, using as the main calculation method the finite difference method
(FDM). The steady state heat transfer through a body without internal heat sources was
considered and the boundary conditions of the first kind (Dirichlet) were applied regarding
the values of temperatures on the delimiting surfaces of the body. The solution of the linear
equation system (LES) was obtained using the Solver tool from the Microsoft Excel®
software application, finding the numerical image of the temperature distribution in the
square cross section. Also, all the numerical results have been translated into a graphical
form, for a more intuitive view.
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Rezumat. Lucrarea prezinta o modalitate de studiu si analiza numerica a campului de
temperatura 2D Intr-o sectiune de formad pdtratd a unei grinzi. A fost construit si utilizat
pentru studiu un nou instrument software, folosind ca metoda de calcul principala metoda
calculului cu diferente finite (MDF). A fost considerat transferul termic in regim stationar,
printr-un corp fard surse interioare de caldura si aplicate conditiile la limitd de specia 1
(Dirichlet) privind valorile temperaturilor pe suprafetele delimitatoare ale corpului.
Rezolvarea sistemului de ecuatii liniare (SEL) format a fost efectuatd cu ajutorul
instrumentului Solver din aplicatia software Microsoft Excel®, obtindnd determinarea
numerica a distributiei temperaturii in campul sectiunii patrate. Rezultatele numerice au
fost transpuse si intr-o forma grafica pentru o vizualizare mai intuitiva.
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1. Introduction

Paper [1] has indicated the way by which, starting from the fundamental law of
heat conduction (Fourier) in the general format (1) described by [2], [3], [4], [5], [6],
[7], [8] etc.:
ot . 2 M
= =a-(r?e+%e) (1)
considering a steady state heat transfer (% = 0) and taking into account the fact

that no internal heat sources (IHS) are present (g,ys = 0), in the case when the

temperature variation along one coordinate axis e.g., Oz may be neglected (% = ), the
Fourier equation is expressed in the simplified form (2) [2], [3], [5], [6] etc.

%t | 9%t

a2ty =0 @)

The second-order partial differential equation (2) may be solved approximately
by numerical integration techniques e.g., the finite differences method (FDM) [1], [2],
[3]1, [4], [5], [6] etc., using equation (3) which is based on second-order finite differences
Ax(Aty) | Ay(Aty)
oz 0 o 0 3)
where A, (At,) and Ay(Aty) are expressed in the set of equations (4)

{Ax(Atx) = (tx+Ax,y - tx,y) - (tx,y - tx—Ax,y)

4)
Ay(Aty) = (tx.y+Ay - tx,y) - (tx.y - tx.y—Ay)
and the first order finite differences, At, and At, are given, for example, in the

set of equations (5)

{Atx = leraxy — tay )
Aty = tx,y+Ay — tx,y
y h

tx,y+Ay

. | 1
tx-Axy tx,y tx+Axy “x

.
<]

tzy-by

Fig. 1. The temperature tyy in the node having coordinates (x,y) [1], [2], [3] etc.
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When a rectangular mesh (or grid) is considered for representing the nodes in
which the temperatures will be calculated, as in Figure 1 [1], [3], [6], [7] etc., the generic
temperature tx,y in the mesh node having coordinates (x,y) can be expressed by the means
of equation (6):

txtaxyttx—nx,y = tx,y+ayttxy—ny
tx,y — Ax2 ; . Ay? (6)
(5 57)

In usual cases, a square mesh is used for the 2D analysis of the temperature field,
by choosing the same spacing step Ax=Ay=A for nodal points generation on both
coordinate axes Ox and Oy, so the generic temperature txy in a mesh node having
coordinates (x,y) is calculated as an arithmetic average of the temperature at the four
neighboring nodes (7) [1], [2], [3], [4], [5] etc.:

¢ _ txsayttx—pytixy+atixy—a 7
xy = - )

This paper presents a solution for the numerical calculation of the temperature
distribution inside a square cross section, applying boundary conditions of the first kind
(Dirichlet), by using the Solver instrument from Microsoft Excel®, with the purpose of
solving the linear equation system (LES) obtained after running FDM.

The Solver instrument uses a group of cells from the Microsoft Excel®
spreadsheet, directly or indirectly correlated with a certain cell called objective (Set
Objective), which contains a value specified by the user (Value Of) or, in some other
cases, may be maximized or minimized (Max/Min). With the goal to obtain in the
objective cell the desired result by minimizing the computed numerical error, the Solver
instrument modifies the initial values provided in certain dedicated cells (Variable
Cells), takes into account the specified solving restrictions (Subject to the Constraints)
that provide the frontiers of the solutions domain and finally calls a problem-solving
algorithm, for example Simplex LP.

The proposed solving method is useful especially when initial data can suffer a
series of modifications with respect to the situation studied in a certain solving stage,
does not require a special effort from the user for the computer implementation and has
the advantage of providing quick results, in both numerical and graphical form.

2. Solving the heat transfer problem

The technical application proposed for solving is described in the following
statement:

A reinforced concrete (RC) beam with a square cross section of 40%x40 cm,
has on one of the surfaces the temperature t;;=150°C, and on the other
surfaces the temperatures ts2=ts3=t4=50°C (Figure 2).

Using the finite differences method (FDM), determine the temperatures in
the nodes of a squared discretization grid having an equal spacing step on
the both Ox and Oy axes of coordinates, Ax=Ay=10 cm.
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Building the automatic calculation spreadsheet for this application requires the
completion of certain work stages that will be described as follows.

First, it is necessary to specify and implement the initial data for the discussed
problem i.e., the temperature values tsi, ts, ts3 and ts4 on the delimiting surfaces of the
square cross section (Figure 3).

It is preferable and recommended to specify the values of the temperatures by
treating them as separate variables placed in independent cells, instead of using them as
constant values placed directly into the formulas that will be inserted.
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Fig. 2. Squared mesh for nodal temperature calculation (equal step Ax=Ay=10 cm)

When these initial values may suffer some modifications, and especially when it
is possible to have different combinations of those values for the study of the 2D field
of temperature, the effort of adapting the calculation instrument to the new situation will

be largely reduced, by having an easy access to the current values and quickly making
the necessary changes.

Marime ID U.M. | Valoare
Temp. suprafata 1 a1 150 C
Temp. suprafata 2 1s2 50 C
Temp. suprafata 3 1s3 50 C
Temp. suprafata 4 154 20 g

Fig. 3. Implementing the initial data of the problem (the temperatures ts1, ts, ts3, ts4)

Using relation (7) for expressing the unknown temperatures ti...ts in the nodes
of the square discretization mesh from Figure 2, the next equations (8) were obtained
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4

£, = ty+ts+tztte
4

£ = tr+te+tsz+to
4

f o battyttstt
4 4

tattgtte+t
{ t5 — 4 84 6 2 (8)

t _ t5+t9+t53+t3
6~ 4

£ = tsrttsattgtts
4

ty = ty+tss+to+ts
4

p = Lottsattestts

bo=—"—"7, —

Using an intermediary step (9) in expressing the above equations

(4't1=t51+t4+t2+t54
|4t =t +ts5+t3+ts
4tz =ty +tg+ ity +tgy
4-t,=tyq+t;+ts+ 1t
{4't5=t4+t8+t6+t2 9)
4-tg=ts+tg+ty;+1t;
4ty =ty +tyy Higt ity
4-tg=t; +tsy +tg+ts
\4 -ty =tg+tsp +ts3 + g

gives the LES (10), which has nine equations with nine unknowns and has to be solved
numerically.
4oty —t,—0tg—t, +0ts+0-tg+0-t;+0tg+0-tg="ts +tgy
—t;+4t,—t3+0t,—ts+0-tg+0-t;+0tg+0 tyg =ty
0 t;—t,+4-t3+0t,+0 ts—tg+0-t;+0tg+0-tg=tg+tg
—t;+0t, +0-t3+4-t,—ts+0-tg—t;, +0-tg+0-ty =ty
0 t;—t,+0tg—t,+4-ts—tg+0-t;—tg+0-tyg=0 (10)
0-t;+0t,—ts+0-ty—ts+4-tg+0-t;, +0-tg—ty =t
0-t;+0t,+0-t3—t,+0-ts+0tg+4-t;—tg+0-tyg =ty +tg
0 t;+0t,+0-t3+0ty—ts+0-tg—t;, +4-tg—tg=tg
0 t;+0-t,+0-t3+0ty+0 ts—tg+0-t;, —tg+4-tyg=tg+ts

Taking into account the fact that the Solver instrument from Microsoft Excel®
operates with a certain group of cells which are correlated with the objective cell (Set
Objective), and after the numerical procedure it can modify the values from these cells
indicated by the user, the unknown temperature values ti...ts are initialized as shown in
Figure 4, using for example the value 1.0°C.
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t1

t2

t3 t4

t5

t6

t7 t8 19

[valori variabile 1.000

1.000

1.000 1.000

1.000

1.000

1.000 1.000 1.000

Fig. 4. Initializing the unknown temperatures t;...to in the nodes of the square mesh
For the linear equation system (10), the usual matrix form (11) was used [1], [2],

[3] etc.:

where:

CM xXVCV =CCV

e CM — The coefficient matrix (12);
e VCV — The variable column vector (13);
e CCV —The constant column vector (14).

. I —
cococoolol »
|
(=N

0 -1 0 0
-1 0 -1 0
4 0 0o -1
0 4 -1 0
o -1 4 -1
-1 0 -1 4
0O -1 0 0
0 0O -1 0
0 0 0o -1
_tl_
)
t3
ty
VeV = te
ts
ty
_t8-
rts1 Tt tsa
tsa
ts3 t tsa
ts1
CCV = 0
|t |
ts1 t ts2
ts2
[ tor + tg3]

(11)
0 01
0 0
0 0
0 0
-1 0 (12)
0 -1
—1
4 -1
-1 4 |
(13)
(14)

The coefficient matrix (CM) is implemented in the spreadsheet as in Figure 5.
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Ecuatial 4.0 1.0 0.0 10 0.0 0.0 0.0 0.0 0.0
Ecuatia2 =10 4.0 -1.0 0.0 =128 0.0 0.0 0.0 0.0
Ecuatia3 0.0 = LI} 4.0 0.0 0.0 -1.0 0.0 0.0 0.0
Ecuatia4 <1 .0 0.0 0.0 4.0 -1.0 0.0 -1.0 0.0 0.0
Ecuatiab 0.0 1.0 0.0 -1.0 4.0 -1.0 0.0 1.0 0.0
Ecuatiad 0.0 0.0 -1.0 0.0 S48 4.0 0.0 0.0 140
Ecuatia’ 0.0 0.0 0.0 -1.0 0.0 0.0 4.0 -1.0 0.0
Ecuatiad 0.0 0.0 0.0 0.0 -1.0 0.0 -1.0 4.0 -1.0
Ecuatiag 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 10 4.0

Fig. 5. Implementing the coefficient matrix (CM)

The initial values of the temperatures ti...ty from Figure 4 and the CM (12)
associated to the LES were used to calculate a column of initial results (the column
called Rezultat from Figure 6).

This column has to be compared term by term, by using the operator Op equal
(=), with the corresponding numerical values from CCV (the column called Problema
from Figure 6) which are obtained using the temperatures tsi...tss on the delimiting
surfaces of the square cross section.

Rezultat |Op.| Problema |
20 = 200.0
1.0 = 50.0
20 = 100.0
1.0 = 150.0
0.0 = 0.0
1.0 = 50.0
20 = 200.0
1.0 = 500
20 = 100.0

Fig. 6. The initial results (column Rezultat) and the numerical values from CCV (column Problema)

After numerically solving the LES (10) with nine unknowns, the final values
obtained in the column Rezultat must be identical with those from the column
Problema associated to CCV (14).

As already mentioned in §1, because the Solver instrument operates with a cell
called objective (Set Objective), in order to point to that cell, it is necessary to use inside
the spreadsheet an additional line called Conditie, which contains this cell.

For this purpose, any equation from LES (10) may be used, so for example in
Figure 7, equation no. 1 was used and emphasized.

[Conditie | 40 [ 10 [ oo [ 10 [ oo | oo | oo [ oo [ oo | 20 [=7] 2000 |
Fig. 7. Using the condition that contains the objective cell (equation no. 1 from LES)

The final form of the computer implementation of the proposed problem in §2 is
indicated in Figure 8 and contains all the elements that were previously and individually
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presented in Figures 4, 5, 6 and 7: initializing the unknown temperatures ti...to, the
coefficient matrix (CM), the column of the initial results, the constant column vector
(CCV) and the additional line containing the necessary condition for operating the
Solver instrument.

|Imp|ememare in Excel |

t 2 3 t4 t5 6 t7 t8 t9 | Rezultat [Op.[ Problema|

Valori variabile 1.000 | 1000 | 1000 [ 1000 | 1000 | 1000 | 1000 | 1000 | 1.000

Ecuatiat 40 1.0 0.0 1.0 0.0 00 0.0 0.0 0.0 20 [ =] 2000
Ecuatia2 -1.0 40 1.0 0.0 10 0.0 0.0 0.0 0.0 10 | =] 500
Ecuatia3 0.0 -1.0 40 0.0 0.0 -1.0 0.0 0.0 0.0 20 | =| 1000
Ecuatiad 10 0.0 0.0 40 -10 00 30 0.0 0.0 10 | =] 1500
Ecuatias 0.0 1.0 0.0 -1.0 40 -1.0 0.0 -1.0 0.0 00 [= 0.0
Ecuatia 0.0 0.0 -1.0 0.0 1.0 4.0 0.0 0.0 1.0 10 | =] 500
Ecuatia? 0.0 0.0 0.0 -1.0 0.0 00 40 -10 0.0 20 | =| 2000
Ecuatia8 0.0 0.0 0.0 0.0 1.0 0.0 1.0 40 1.0 10 | =] 500
Ecuatiad 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 -1.0 40 20 | =] 1000
Conditie 40 1.0 0.0 1.0 0.0 00 0.0 0.0 0.0 20 [ =] 2000

Fig. 8. The final form of the computer implementation used for solving the problem

The calculation of the temperature values ti...to in the mesh nodes from Figure 2
is being performed numerically, by solving the LES (10) using the Solver instrument,
according to the following steps:

a) From the “Data” ribbon of Microsoft Excel®, it is necessary to call the dialog

window “Solver Parameters” (Figure 10) of the Solver instrument.

Add-ins ? X

Add-ins available:

[ Analysis ToolPak | oK |

:|Ana|g,rs\5 ToolPak - VBA

:‘ Euro Currency Tools c |

¥4 solver Add-in ance

Browse...

Automation...

Solver Add-in

Tool for optimization and equation solving

Fig. 9. Installing the Solver instrument as an add-in

Note:

The Solver instrument is an add-in that must be installed before its first use.
The installation is made by calling from the menu File -> Options -> Add-ins
->FExcel Add-ins -> Go ... the “Add-ins” dialog window presented in Figure
9, in which the validation option “Solver Add-in” must be checked and then
the OK button must be pressed;
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b) Give the reference to the objective cell ($L$43 in Figure 10) contained in the

additional line called Conditie, check the option “Value Of”, then in the text
box nearby give the value that must be obtained. Using equation no. 1 of LES
(10), the necessary value is the first corresponding value from CCV (14), as
shown for example in Figure 8;

The cells containing the unknown temperature values ti...to initialized with
the value of 1.0°C in Figure 4 must be indicated directly or by selecting them
with the current pointing device (mouse) inside the “By Changing Variable
Cells” box. It is recommended that these cells should form a contiguous range
in the spreadsheet e.g., $C$33:$K$33 as in Figure 10;

d) Inside the “Subject to the Constraints” list box, it is necessary to give the

restrictions (constrains) that are defining the solution of the problem, using
the dedicated buttons (“Add”, ”Change”, ”Delete”) available in the ”Solver
Parameters” dialog window. These restrictions are defined by the fact that the
correct results are obtained when the numerical values from the column
Rezultat become identical to those from the column Problema (Figure 8);

Solver Parameters x
Set Objective: L343 4
T () Max ) min @ value OF 200

By Changing Variable Cells:

Subject to the Constraints:

$CE33:8KE33

I=

SLE3ALE42 = FNEILIENE42 Add

Change

Delete

Beset all

Load/Save

D Make Unconstrained Variables Non-MNegative

Select a Solving simplex LP i Options
Method:

Solving Method

Select the GRG Monlinear engine for Solver Prablems that are smoaoth nonlinear. Select the LP Simplex
engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth.

Help Solve Close

Fig. 10. Specifying solving parameters used by Solver
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e) Optionally, other advanced solving preferences may be specified by using the
“Options” button;
f) Finally, the “Solve” button must be pressed.
The numerical values of the temperatures ti...to in the nodes of the chosen square
mesh, obtained by solving the LES (10) numerically and modified by Solver in the cells

indicated by the user in the “By Changing Variable Cells” box, are presented in Figure 11.
Rezultate

t 2 3 4 t5 6 t7 t8 t8 | Rezultat |Op.| Problema |

Valori variabile 92857 | 68.750 | 57.143 | 102679 | 75.000 | 59.821 | 92857 | 68750 | 57.143

Ecuatiai 40 10 0.0 1.0 00 00 0.0 0.0 00 2000 [ =] 2000
Ecuatia2 -10 40 -10 00 -10 00 0.0 0.0 00 500 | =| 500
Ecuatia3 00 -10 40 00 00 -10 00 00 00 1000 | = | 1000
Ecuatiad 9.0 0.0 0.0 40 10 0.0 10 0.0 00 1500 | = | 1500
Ecuatia5 00 -10 0.0 1.0 40 -1.0 0.0 10 00 00 | = 0.0
Ecuaiab 00 0.0 -1.0 00 -10 40 0.0 0.0 -10 500 | =| 500
Ecuatial 00 00 00 10 00 00 40 -10 00 2000 | =| 2000
Ecuatiad 00 00 00 00 -10 00 -10 40 -10 500 | =| 500
Ecuatiad 00 0.0 0.0 00 00 1.0 0.0 1.0 40 1000 | = | 1000
Conditie 40 -10 00 -10 00 00 00 00 00 2000 | = | 200.0

Fig. 11. Numerical values of the temperatures t;...to
In order to obtain an overall numerical image of the 2D temperature field for the
square cross section, the temperature values ti...to in the mesh nodes, the temperatures
ts1...tss on the delimiting surfaces of the section and the temperature values in its corners,
may be grouped together in an uncluttered region of the spreadsheet, as shown in Figure
12.

100 150 150 150 100
50 92 857 |102.679| 92857 50
50 68.750 | 75.000 | 68.750 50
50 57.143 | 59.821 | 57.143 50
50 50 50 50 50

Fig. 12. The 2D temperature field in the square cross section (numerical representation)

If there is no additional information or technical specifications available
regarding the nodes situated at the intersection of two surfaces having constant
temperature (the corners of the cross section), the temperature in these nodes may be
estimated by using the arithmetic average of the respective surface temperatures (13) [1]

etc.:
ts,m+ts,n

: (15)

The numerical image of the 2D temperature field in the square cross section
(Figure 12) can be graphically translated, by using one or more methods of graphical
representation that Microsoft Excel® gives to the user. For example, in Figure 13 is
presented a 2D graphical image of the temperature field, using interpolated contours,
and in Figure 14 is showed a 3D image of the temperature values from the field.

Node m — n: tj =



Steady state two-dimensional heat conduction in a square cross section, by using Microsoft Excel® for
numerical modeling

- Seriesd
o = 100-150

y = 50-100

> m0-50
... )
-... -
1 2 3

| r Seriesl
4 5

Fig. 13. Graphical representation of the 2D temperature field in the square cross section, using
interpolated contours

S~ = 140-160
2 =120-140
" =100-120
> = 80-100
0 7 = 60-80
140 +
J/’}
120

20 P ~>-Series4
0= - /,/ Series3
1 T
2 T <" Series2
3 ﬁh*"“--,___ _//
4 " Seriesl

5

Fig. 14. 3D graphical representation of the temperature values from the square cross section field

3. Studied and solved cases

The presented software instrument solves numerically the application proposed
in this paper, but its utility is proven especially in the cases of analysis of the 2D
temperature field for the square cross section, when modifications of the initial
temperature values tsi...ts4 on the delimiting surfaces of the section appear.

With an additional effort for implementing, the instrument can be adapted to
solve a more complicated LES, by using a ,,finer” discretization mesh, having a smaller
spacing step for temperature nodal points generation.

In the cases of study and analysis of the 2D temperature field for the square cross
section, the temperature values ts;...ts4 are modified in the corresponding cells in Figure
3. Later, the Solver instrument will solve the LES (10), using the same parameters as
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those indicated in Figure 10 and adapting the value from the text box situated on the
right of the “Value Of” control to the studied case.

Some of the analyzed situations are presented hereinafter, by indicating in each
case: the initial data, the solved LES, the numerical results obtained and the graphical

representations describing the temperature field of the square cross section.

Case no. 1
Temperatures on the delimiting surfaces of the square cross section:
tsl = 80°C
te, = 30°C
te; = 80°C
te, = 30°C
Marime ID U.M. | Valoare
Temp. suprafata 1 ts1 80 C
Temp. suprafata 2 152 30 C
Temp. suprafata 3 ts3 80 C
Temp. suprafata 4 ts4 30 &

Fig. 15. Case no. 1: Initial data

t t2 13 t4 t5 t6 t7 8 t8 | Rezultat |Op.| Problema |
Valori variabile 55000 | 48750 | 55000 | 61250 | 55000 | 61250 | 55000 | 48750 | 55000
Ecuatia1 40 1.0 00 ET) 0.0 0.0 00 0.0 0.0 1100 BN 1100
Ecuatia2 -10 40 -1.0 00 -1.0 0.0 00 00 0.0 300 | = 300
Ecuatia3 0.0 1.0 40 0.0 0.0 1.0 00 0.0 0.0 1100 | = | 1100
Ecuatiad -1.0 00 00 4.0 -10 00 10 00 00 800 | =| 800
Ecuafia5 0.0 1.0 00 1.0 40 1.0 00 1.0 0.0 00 = 0.0
Ecuatiat 0.0 00 -10 00 -1.0 4.0 00 0.0 -1.0 800 | = 800
Ecuatia? 0.0 0.0 00 1.0 0.0 0.0 40 1.0 0.0 1100 | =| 1100
Ecuatia8 0.0 00 00 00 -1.0 0.0 10 40 -10 300 | =| 300
Ecuatiad 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 4.0 1100 | =| 1100
Conditie 40 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1100 [ =] 1100
Fig. 16. Case no. 1: Solved LES
55 80 80 80 55
30 55000 | 61.2560 | 55.000 30
30 48 750 | 55.000 | 48.750 30
30 55000 | 61.250 | 55.000 30
55 80 80 80 55
Fig. 17. Case no. 1: Numerical representation of the 2D temperature field
g Seriesd
u60-80 = 70-80
w 40-60 = 60-70
=20-40 : zg:gg
m0-20 = 30-40

- Series3

SEHESZ

T Ser\esl

il
_~ Series3

g
< Series2

- Pl
7 Seriesl
5

Fig. 18. Case no. 1: 2D and 3D graphical representation of the temperature field
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Case no. 2
Temperatures on the delimiting surfaces of the square cross section:
ty = 45°C
te, = 70°C
te; = 20°C
tey = 50°C
Marime ID U.M. | Valoare
Temp. suprafata 1 ts1 45 i
Temp. suprafata 2 1s2 70 C
Temp. suprafata 3 153 20 I
Temp. suprafata 4 is4 50 [
Fig. 19. Case no. 2: Initial data
t 12 13 t4 15 16 t7 8 t8 | Rezultat [Op.| Problema |
Valori variabile 47143 | 45402 | 38214 | 48170 | 46250 | 37455 | 54286 | 53973 | 45357
Ecuatial 40 -10 00 -10 00 00 00 00 00 950 = 950
Ecuatia2 -1.0 4.0 -1.0 0.0 -1.0 00 0.0 0.0 0.0 50.0 = 50.0
Ecuatia3 0.0 -10 40 0.0 00 -10 00 00 0.0 700 | =| 700
Ecuatias 1.0 0.0 0.0 40 1.0 0.0 =10 0.0 0.0 450 |'=| 450
Ecuatias 0.0 -1.0 0.0 1.0 40 10 0.0 1.0 0.0 0.0 = 0.0
Ecuatiaf 0.0 00 -1.0 00 -1.0 40 00 00 -1.0 200 = 200
Ecuatia? 0.0 0.0 0.0 10 00 00 40 10 0.0 1150 [ 1150
Ecuatia8 0.0 0.0 0.0 0.0 -1.0 0.0 -1.0 4.0 -1.0 700 = 70.0
Ecuatia9 0.0 00 00 0.0 00 1.0 0.0 -1.0 4.0 900 | =] 900
Conditie 40 -10 00 -10 00 0.0 00 0.0 00 950 | = 95.0
Fig. 20. Case no. 2: Solved LES
475 45 45 45 S
50 A7 143 | 48170 | 54 286 70
50 45402 | 46 250 | 53973 70
50 38214 | 37 455 | 45357 70
35 20 20 20 45
Fig. 21. Case no. 2: Numerical representation of the 2D temperature field
Series4 7 60-70
m 60-80 = 50-60
m 40-60 = 40-50
u20-40 = 30-40
=020 o =20-30
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10 1 ""j:—Seriestl
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Fig. 22. Case no. 2: 2D and 3D graphical representation of the temperature field

Case no. 3
Temperatures on the delimiting surfaces of the square cross section:
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—_— (o)
ty = 50°C
—_ (o)
te, = 25°C
—_— (o)
tes = 0°C
—_— (o)
te, = 10°C
Marime ID U.M. | Valoare
Temp. suprafata 1 151 50 &
Temp. suprafata 2 152 25 5
Temp. suprafata 3 1s3 0 C
Temp. suprafata 4 is4 10 [
Fig. 23. Case no. 3: Initial data
S 1 12 13 t4 [ 16 17 8 18 | Rezultat [Op.] Problema|
Valori variabile 27500 | 17.008 | 9643 | 32902 [ 21250 | 11473 [ 32857 | 23527 | 15.000
Ecuatial 4.0 10 0.0 10 0.0 00 00 00 00 600 | =] 600
Ecuatia? 10 40 -1.0 0.0 -1.0 00 00 0.0 00 100 | =| 100
Ecuatia3 00 1.0 40 0.0 00 1.0 00 0.0 00 100 | =| 100
Ecuatia4 -10 00 00 4.0 1.0 00 10 0.0 00 500 | =| 500
Ecuatia5 00 10 00 40 40 40 00 1.0 00 00 |=| 00
Ecualia 0.0 00 -1.0 0.0 -1.0 40 0.0 00 -10 00 | =| o0
Ecuatia? 0.0 00 00 10 00 0.0 40 4.0 00 750 = 750
Ecualia8 00 00 00 0.0 .0 00 -10 40 10 250 [B=1 250
Ecuatiad 00 0.0 00 00 00 10 00 1.0 40 250 [ =1 250
Conditie 40 10 00 10 00 0.0 00 0.0 00 600 | =] 60.0
Fig. 24. Case no. 3: Solved LES
30 50 a0 a0 375
10 27500 | 32902 | 32857 25
10 17098 | 21250 | 23527 25
10 9643 | 11473 | 15000 25
5 0 0 0 125
Fig. 25. Case no. 3: Numerical representation of the 2D temperature field
® 40-50
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Fig. 26. Case no. 3: 2D and 3D graphical representation of the temperature field

4. Conclusions

The problem of steady state heat transfer in a square cross section may be
numerically solved by using the finite differences method (FDM). The differential
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equation (2) that characterizes the 2D temperature field in the section is replaced by the
finite differences equation (3), then a squared discretization mesh with an equal spacing
step Ax=Ay=A for node generation on both Ox and Oy coordinate axes is used, and
finally the unknown temperatures in the mesh nodes are expressed using the relation (7).

The resulting linear equation system LES (9) is numerically solved by calling the
Solver instrument from Microsoft Excel® software, part of the Microsoft Office® suite.
This instrument can modify the initial values indicated by the user in certain cells of the
spreadsheet, with the purpose to later obtain the targeted result in the objective cell (Set
Objective).

The preparations for solving the studied problem were made in several steps:
introduction of initial data as separate variables (Figure 3), initialization of the unknown
variables (Figure 4), description of LES (9) in a matrix form (10), successive
implementation of the coefficient matrix CM (Figure 5), the constant column vector
CCV (Figure 6) and an additional line called Condition (Figure 7). The final form of the
computer implementation of the problem-solving process is presented in Figure 8.

The numerical solving of the LES (9) was done by using the Solver instrument,
specifying the necessary solving parameters: the reference to the objective cell and the
target value, respectively, the group of cells containing the values of the unknown
temperatures, the solving restrictions (constraints) and finally the choice for the
SimplexLP algorithm as a preferred method for problem-solving (Figure 10).

The obtained numerical results regarding the values of the unknown temperatures
in the square section field, the temperatures on its delimiting surfaces and the estimated
temperatures in the corners of the section were grouped together in Figure 12 in order
to offer an overall numerical image of the 2D temperature field of the section. For a
more intuitive visualization, these numerical values may be graphically depicted using
the various 2D or 3D types of representations that Microsoft Excel® offers to the user
(Figure 13 and Figure 14).

A series of cases were studied and solved, when temperatures on the delimiting
surfaces of the square section were modified, generating a certain thermal load,
symmetric or asymmetric. Using the separate variable implementation of those
temperature values, the modifications were done without any additional complications,
and then by calling the Solver instrument, the numerical and graphical results
corresponding to each case of study were quickly obtained.

In order to analyze some more detailed 2D temperature fields, the created
software instrument can be adapted with an additional implementation effort, by
modifying the spacing step for the positioning of the mesh nodes and by increasing the
number of unknown temperatures i.e., the number of nodes. However, this strategy will
also increase the number of equations in the LES, and consequently, the complexity of
the problem that has to be solved. In this case when the number of nodes and
temperatures within, respectively, will become very large, it is preferable to better use a
dedicated computer software, that will automatically build the discretization mesh and
solve the generated LES.
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The instrument for the study and automatic calculation of the 2D temperature
field in a square cross section that was presented in this paper is useful for both the
students of the Building Services Faculty studying the multidimensional heat transfer,
and the domain specialists interested in practical solving these types of engineering
applications.
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